论文标题
使用起搏伪面罩的非文字涂鸦监督学习用于医疗图像分段
Non-Iterative Scribble-Supervised Learning with Pacing Pseudo-Masks for Medical Image Segmentation
论文作者
论文摘要
涂鸦监督的医学图像细分可应对稀疏面具的局限性。传统方法在以下方式之间交替:标记伪掩码和优化网络参数。但是,这种迭代的两阶段范式是笨拙的,可能会被困在贫穷的当地最佳状态中,因为网络不太可能地回落到错误的伪口罩。为了解决这些问题,我们提出了一种非著作方法,其中一系列变化的(起搏)伪面具通过一致性培训(名为Pacingpseudo)教授网络。我们的动机首先在于非著作过程。有趣的是,可以通过暹罗建筑优雅地实现,其中一系列伪面具自然会在训练过程中吸收一系列预测的口罩。其次,我们通过两种必要的设计使一致性训练有效:(i)熵正规化以获得高信任伪面具以进行有效的教学; (ii)扭曲的增强量以在伪面罩和预测的遮罩流之间造成差异,以使一致性正则化。第三,我们设计了一种新的内存库机制,该机制提供了整体功能的额外来源,以补充标有像素的稀缺。在三个公共医疗图像数据集上验证了拟议的Pacingpseudo的功效,包括腹部多孔,心脏结构和心肌的分割任务。广泛的实验证明了我们的pacingpseudo可以通过大幅度的边缘提高基线,并始终胜过几种先前的方法。在某些情况下,我们的pacingpseudo与其完全监督的对应物实现了可比的性能,显示了我们方法对具有挑战性的涂鸦细分细分应用的可行性。代码和涂鸦注释将公开可用。
Scribble-supervised medical image segmentation tackles the limitation of sparse masks. Conventional approaches alternate between: labeling pseudo-masks and optimizing network parameters. However, such iterative two-stage paradigm is unwieldy and could be trapped in poor local optima since the networks undesirably regress to the erroneous pseudo-masks. To address these issues, we propose a non-iterative method where a stream of varying (pacing) pseudo-masks teach a network via consistency training, named PacingPseudo. Our motivation lies first in a non-iterative process. Interestingly, it can be achieved gracefully by a siamese architecture, wherein a stream of pseudo-masks naturally assimilate a stream of predicted masks during training. Second, we make the consistency training effective with two necessary designs: (i) entropy regularization to obtain high-confidence pseudo-masks for effective teaching; and (ii) distorted augmentations to create discrepancy between the pseudo-mask and predicted-mask streams for consistency regularization. Third, we devise a new memory bank mechanism that provides an extra source of ensemble features to complement scarce labeled pixels. The efficacy of the proposed PacingPseudo is validated on three public medical image datasets, including the segmentation tasks of abdominal multi-organs, cardiac structures, and myocardium. Extensive experiments demonstrate our PacingPseudo improves the baseline by large margins and consistently outcompetes several previous methods. In some cases, our PacingPseudo achieves comparable performance with its fully-supervised counterparts, showing the feasibility of our method for the challenging scribble-supervised segmentation applications. The code and scribble annotations will be publicly available.