论文标题

自动编码的稀疏贝叶斯内部分解,校准和摊销的工作障碍功能评估电池

Autoencoded sparse Bayesian in-IRT factorization, calibration, and amortized inference for the Work Disability Functional Assessment Battery

论文作者

Chang, Joshua C., Chow, Carson C., Porcino, Julia

论文摘要

工作障碍功能评估电池(WD-FAB)是一种多维项目响应理论(IRT)仪器,旨在根据对项目库的响应评估与工作相关的心理和身体功能。在先前的迭代中,它是使用传统手段开发的 - 用于项目分配/选择的线性分解和零假设统计测试,最后是对差异一维IRT模型的后校准。结果,与许多其他IRT仪器一样,WD-FAB是一个后模型。基于探索性因素分析,其项目分配对最终的非线性IRT模型视而不见,并且不以适合最终模型的良好方式进行。在此手稿中,我们开发了一个贝叶斯分层模型,用于自谐执行以下同时任务:比例分解,项目选择,参数识别和响应评分。该方法使用基于稀疏性的收缩来消除通常需要用于开发多维IRT模型所需的线性分解和零假设统计检验,因此该项目分配与最终的非线性因子模型一致。我们还将多维IRT模型类似于概率自动编码器,指定一个编码函数,该函数摊销了来自项目响应的能力参数的推断。编码器函数等于我们在整个模型上用于大概贝叶斯推断的随机变化贝叶斯期望最大化(VBEM)过程中的“ VBE”步骤。我们在WD-FAB项目响应的样本上使用该方法,并将结果的项目区分与使用传统的Postthoc方法获得的方法进行比较。

The Work Disability Functional Assessment Battery (WD-FAB) is a multidimensional item response theory (IRT) instrument designed for assessing work-related mental and physical function based on responses to an item bank. In prior iterations it was developed using traditional means -- linear factorization and null hypothesis statistical testing for item partitioning/selection, and finally, posthoc calibration of disjoint unidimensional IRT models. As a result, the WD-FAB, like many other IRT instruments, is a posthoc model. Its item partitioning, based on exploratory factor analysis, is blind to the final nonlinear IRT model and is not performed in a manner consistent with goodness of fit to the final model. In this manuscript, we develop a Bayesian hierarchical model for self-consistently performing the following simultaneous tasks: scale factorization, item selection, parameter identification, and response scoring. This method uses sparsity-based shrinkage to obviate the linear factorization and null hypothesis statistical tests that are usually required for developing multidimensional IRT models, so that item partitioning is consistent with the ultimate nonlinear factor model. We also analogize our multidimensional IRT model to probabilistic autoencoders, specifying an encoder function that amortizes the inference of ability parameters from item responses. The encoder function is equivalent to the "VBE" step in a stochastic variational Bayesian expectation maximization (VBEM) procedure that we use for approxiamte Bayesian inference on the entire model. We use the method on a sample of WD-FAB item responses and compare the resulting item discriminations to those obtained using the traditional posthoc method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源