论文标题
在保形歧管上的协变量异常
Covariantly Constant Anomalies on Conformal Manifolds
论文作者
论文摘要
具有整数缩放尺寸的操作员在均匀的保形场理论中表现出众所周知的B型Weyl异常。通常,这些异常非依赖于准确的边缘耦合。我们研究了几个示例中相应的全协变量异常在共形歧管上的功能。我们表明,Wess-Zumino一致性条件的自然后果是,相对于精确边缘耦合,异常是协变量的。该论点是一般的,即使在真空的模量空间上自发断裂,也适用了该论点。
Operators with integer scaling dimensions in even-dimensional conformal field theories exhibit well-known type-B Weyl anomalies. In general, these anomalies depend non-trivially on exactly marginal couplings. We study the corresponding fully covariantised anomaly functional on conformal manifolds in several examples. We show that a natural consequence of the Wess-Zumino consistency condition is that the anomalies are covariantly constant with respect to the exactly marginal couplings. The argument is general and applies even when the conformal symmetry is spontaneously broken on moduli spaces of vacua.