论文标题
深度学习衍生的最佳航空策略来控制大流程
Deep Learning-Derived Optimal Aviation Strategies to Control Pandemics
论文作者
论文摘要
COVID-19的大流行已经影响了世界各地的国家,要求剧烈的公共卫生政策减轻感染的传播,从而导致经济危机作为附带损害。在这项工作中,我们调查了人类流动性(通过国际商业飞行描述)对全球范围的Covid-19感染动态的影响。为此,我们开发了一个基于图形神经网络的框架,称为动态连接图(DCSAGE),该框架在时空图上运行,非常适合动态更改邻接信息。为了了解不同地理位置的相对影响,由于它们相关的空中交通对大流行的发展,我们通过节点扰动实验对模型进行了局部灵敏度分析。从分析中,我们将西欧,北美和中东确定为助长大流行的领先地理位置,这归因于空中交通的巨大性,这些地区源于这些地区。我们使用这些观察结果来确定有形的空中交通交通策略,这些策略可能会对控制大流行产生很大影响,并且对人类流动性的干扰最少。我们的工作为研究全球大流程学提供了一种强大的基于深度学习的工具,并且与政策制定者的关键相关,以便在未来爆发期间就空中交通限制做出明智的决定。
The COVID-19 pandemic has affected countries across the world, demanding drastic public health policies to mitigate the spread of infection, leading to economic crisis as a collateral damage. In this work, we investigated the impact of human mobility (described via international commercial flights) on COVID-19 infection dynamics at the global scale. For this, we developed a graph neural network-based framework referred to as Dynamic Connectivity GraphSAGE (DCSAGE), which operates over spatiotemporal graphs and is well-suited for dynamically changing adjacency information. To obtain insights on the relative impact of different geographical locations, due to their associated air traffic, on the evolution of the pandemic, we conducted local sensitivity analysis on our model through node perturbation experiments. From our analyses, we identified Western Europe, North America, and Middle East as the leading geographical locations fueling the pandemic, attributed to the enormity of air traffic originating or transiting through these regions. We used these observations to identify tangible air traffic reduction strategies that can have a high impact on controlling the pandemic, with minimal interference to human mobility. Our work provides a robust deep learning-based tool to study global pandemics and is of key relevance to policy makers to take informed decisions regarding air traffic restrictions during future outbreaks.