论文标题
Logitr:具有优先空间的多项式和混合logit模型的快速估计,并愿意支付太空实用程序参数化
logitr: Fast Estimation of Multinomial and Mixed Logit Models with Preference Space and Willingness to Pay Space Utility Parameterizations
论文作者
论文摘要
本文介绍了Logitr r软件包,以快速最大似然估计的多项式logit和混合logit模型,这些模型在个人之间具有未观察到的异质性,这是通过允许参数根据所选分布随机随机变化而建模的。该软件包比Mlogit,GMNL,Mixl和Apollo等其他类似的软件包要快,并且支持用“偏好空间”或“愿意支付(WTP)空间”参数化指定的实用程序模型,从而可以直接估计Marginal WTP。使用偏好空间模型计算WTP估计的典型过程可能会导致混合logit模型中WTP在总体中的不合理分布。本文讨论了每个实用程序参数化对WTP估计的含义。它还突出了一些设计功能,这些设计功能使Logitr的性能估计速度可以使用,并包括具有类似软件包的基准测试练习。最后,本文突出了专门为WTP空间模型设计的其他功能,包括用于在空间中指定模型的一致用户界面和一个并行的多启动优化循环,该循环在通过非convex log-likelionehone and估算不同的局部微型型时,对于搜索不同本地微型的解决方案空间特别有用。
This paper introduces the logitr R package for fast maximum likelihood estimation of multinomial logit and mixed logit models with unobserved heterogeneity across individuals, which is modeled by allowing parameters to vary randomly over individuals according to a chosen distribution. The package is faster than other similar packages such as mlogit, gmnl, mixl, and apollo, and it supports utility models specified with "preference space" or "willingness to pay (WTP) space" parameterizations, allowing for the direct estimation of marginal WTP. The typical procedure of computing WTP post-estimation using a preference space model can lead to unreasonable distributions of WTP across the population in mixed logit models. The paper provides a discussion of some of the implications of each utility parameterization for WTP estimates. It also highlights some of the design features that enable logitr's performant estimation speed and includes a benchmarking exercise with similar packages. Finally, the paper highlights additional features that are designed specifically for WTP space models, including a consistent user interface for specifying models in either space and a parallelized multi-start optimization loop, which is particularly useful for searching the solution space for different local minima when estimating models with non-convex log-likelihood functions.