论文标题
lindblad主方程方法的拓扑相过渡中无序的su-schrieffer-heeger模型
Lindblad master equation approach to the topological phase transition in the disordered Su-Schrieffer-Heeger model
论文作者
论文摘要
我们使用Lindblad方程方法研究迁移率边缘的发作和无序的SSH链中的拓扑相变,这些SSH链连接到两个外部浴缸中,以较大的偏置极限。从流过整个系统的非平衡固定电流的缩放特性,我们恢复无序链中的定位/定位。为了探测存在障碍存在的拓扑相变,我们使用均匀的差异占用率作为一种平均拓扑阶段的拓扑范围,以歧视拓扑的非平衡阶段。最终,我们争辩说如何将我们的方法推广到存在疾病的情况下经历拓扑相变的其他系统。
We use the Lindblad equation method to investigate the onset of a mobility edge and the topological phase transition in the disordered SSH chain connected to two external baths in the large bias limit. From the scaling properties of the nonequilibrium stationary current flowing across the system, we recover the localization/delocalization in the disordered chain. To probe the topological phase transition in the presence of disorder, we use the even-odd differential occupancy as a mean to discriminate topologically trivial from topologically nontrival phases in the out-of-equilibirum system. Eventually, we argue how to generalize our method to other systems undergoing a topological phase transition in the presence of disorder.