论文标题

多目标线性编程问题的新几何方法

A new geometric approach to multiobjective linear programming problems

论文作者

Kaci, Mustapha, Radjef, Sonia

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this paper, we present a novel method for solving multiobjective linear programming problems (MOLPP) that overcomes the need to calculate the optimal value of each objective function. This method is a follow-up to our previous work on sensitivity analysis, where we developed a new geometric approach. The first step of our approach is to divide the space of linear forms into a finite number of sets based on a fixed convex polygonal subset of $\mathbb{R}^{2}$. This is done using an equivalence relationship, which ensures that all the elements from a given equivalence class have the same optimal solution. We then characterize the equivalence classes of the quotient set using a geometric approach to sensitivity analysis. This step is crucial in identifying the ideal solution to the MOLPP. By using this approach, we can determine whether a given MOLPP has an ideal solution without the need to calculate the optimal value of each objective function. This is a significant improvement over existing methods, as it significantly reduces the computational complexity and time required to solve MOLPP. To illustrate our method, we provide a numerical example that demonstrates its effectiveness. Our method is simple, yet powerful, and can be easily applied to a wide range of MOLPP. This paper contributes to the field of optimization by presenting a new approach to solving MOLPP that is efficient, effective, and easy to implement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源