论文标题
球体的非平凡缩合域中的椭圆问题过于确定
Overdetermined elliptic problems in nontrivial contractible domains of the sphere
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this paper, we prove the existence of nontrivial contractible domains $Ω\subset\mathbb{S}^{d}$, $d\geq2$, such that the overdetermined elliptic problem \begin{equation*} \begin{cases} -\varepsilonΔ_{g} u +u-u^{p}=0 &\mbox{in $Ω$, } u>0 &\mbox{in $Ω$, } u=0 &\mbox{on $\partialΩ$, } \partial_ν u=\mbox{constant} &\mbox{on $\partialΩ$, } \end{cases} \end{equation*} admits a positive solution. Here $Δ_{g}$ is the Laplace-Beltrami operator in the unit sphere $\mathbb{S}^{d}$ with respect to the canonical round metric $g$, $\varepsilon>0$ is a small real parameter and $1<p<\frac{d+2}{d-2}$ ($p>1$ if $d=2$). These domains are perturbations of $\mathbb{S}^{d}\setminus D,$ where $D$ is a small geodesic ball. This shows in particular that Serrin's theorem for overdetermined problems in the Euclidean space cannot be generalized to the sphere even for contractible domains.