论文标题
使用机器学习的DECAM本地量勘探调查中的星系 - 盖亚结晶型候选候选者的识别
Identification of Galaxy-Galaxy Strong Lens Candidates in the DECam Local Volume Exploration Survey Using Machine Learning
论文作者
论文摘要
我们使用卷积神经网络(CNN)对Galaxy-galaxy强晶状体系统进行搜索,该卷积神经网络(CNN)适用于DECAM本地批量探索调查(Delve)的第一个公共数据发布中的成像数据,该数据包含$ \ sim 5.20亿美元的天文来源,覆盖$ \ sim 4,000 $ $ $ $ $ \ MATHRM {deg} $ of Southern Sky of Southern Sky of Southern Sky of Souther Souther Sky of Souther Sky of Souther Sky of Souther Sky of Souther Sky $ g = 24.3 $,$ r = 23.9 $,$ i = 23.3 $,$ z = 22.8 $ mag。遵循使用DECAM数据进行类似搜索的方法,我们将颜色和幅度切割量剪切,以选择$ \ sim 11澳元的目录11 $ $ \ sim。在与我们的CNN得分之后,对50,000次得分的最高得分进行了检查,并在比例尺(绝对不是镜头)到3(非常可能的镜头)的比例分配得分。我们列出了581个强镜候选者的列表,其中562个以前未报告。我们使用其人为分配的分数对候选人进行分类,从而导致55名A级候选人,149名B级候选者和377级C级候选者。此外,我们还突出了该样品中的八个潜在的四镜镜头。由于我们在北部银河帽($ b> 10 $ ver)和南部半球($ {\ rm dec。} <0 $ deg)中的搜索足迹的位置,我们的候选人名单与其他现有的基于地面的搜索几乎没有重叠。在我们的搜索足迹与其他搜索重叠的地方,我们发现大量以前未识别的高质量候选者,表明我们的方法中有一定程度的正交性。我们报告候选人的特性,包括明显的幅度和根据图像分离估算的爱因斯坦半径。
We perform a search for galaxy-galaxy strong lens systems using a convolutional neural network (CNN) applied to imaging data from the first public data release of the DECam Local Volume Exploration Survey (DELVE), which contains $\sim 520$ million astronomical sources covering $\sim 4,000$ $\mathrm{deg}^2$ of the southern sky to a $5σ$ point-source depth of $g=24.3$, $r=23.9$, $i=23.3$, and $z=22.8$ mag. Following the methodology of similar searches using DECam data, we apply color and magnitude cuts to select a catalog of $\sim 11$ million extended astronomical sources. After scoring with our CNN, the highest scoring 50,000 images were visually inspected and assigned a score on a scale from 0 (definitely not a lens) to 3 (very probable lens). We present a list of 581 strong lens candidates, 562 of which are previously unreported. We categorize our candidates using their human-assigned scores, resulting in 55 Grade A candidates, 149 Grade B candidates, and 377 Grade C candidates. We additionally highlight eight potential quadruply lensed quasars from this sample. Due to the location of our search footprint in the northern Galactic cap ($b > 10$ deg) and southern celestial hemisphere (${\rm Dec.}<0$ deg), our candidate list has little overlap with other existing ground-based searches. Where our search footprint does overlap with other searches, we find a significant number of high-quality candidates which were previously unidentified, indicating a degree of orthogonality in our methodology. We report properties of our candidates including apparent magnitude and Einstein radius estimated from the image separation.