论文标题
Cloinet:通过遥感,原位稀疏观测和深度学习的海洋国家重建
CLOINet: Ocean state reconstructions through remote-sensing, in-situ sparse observations and Deep Learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Combining remote-sensing data with in-situ observations to achieve a comprehensive 3D reconstruction of the ocean state presents significant challenges for traditional interpolation techniques. To address this, we developed the CLuster Optimal Interpolation Neural Network (CLOINet), which combines the robust mathematical framework of the Optimal Interpolation (OI) scheme with a self-supervised clustering approach. CLOINet efficiently segments remote sensing images into clusters to reveal non-local correlations, thereby enhancing fine-scale oceanic reconstructions. We trained our network using outputs from an Ocean General Circulation Model (OGCM), which also facilitated various testing scenarios. Our Observing System Simulation Experiments aimed to reconstruct deep salinity fields using Sea Surface Temperature (SST) or Sea Surface Height (SSH), alongside sparse in-situ salinity observations. The results showcased a significant reduction in reconstruction error up to $40\%$ and the ability to resolve scales $50\%$ smaller compared to baseline OI techniques. Remarkably, even though CLOINet was trained exclusively on simulated data, it accurately reconstructed an unseen SST field using only glider temperature observations and satellite chlorophyll concentration data. This demonstrates how deep learning networks like CLOINet can potentially lead the integration of modeling and observational efforts in developing an ocean digital twin.