论文标题
埃尔哈特理论的积极性超越
Beyond positivity in Ehrhart Theory
论文作者
论文摘要
我们研究由晶格多型产生的半群代数,计算其体积多项式(Hochster的特定工作),并建立强大的Lefschetz属性(前三位作者的概括)。这解决了关于$ h^\ ast $ - 多态度的单型性特性的几种猜想 - 在Ehrhart理论中产生的晶格多型。
We study semigroup algebras arising from lattice polytopes, compute their volume polynomials (particularizing work of Hochster), and establish strong Lefschetz properties (generalizing work of the first three authors). This resolves several conjectures concerning unimodality properties of the $h^\ast$-polynomial of lattice polytopes arising within Ehrhart theory.