论文标题

哈瓦那:坚硬的否定样品意识到空降激光扫描点云语义细分的自制对比度学习

HAVANA: Hard negAtiVe sAmples aware self-supervised coNtrastive leArning for Airborne laser scanning point clouds semantic segmentation

论文作者

Zhang, Yunsheng, Yao, Jianguo, Zhang, Ruixiang, Chen, Siyang, Li, Haifeng

论文摘要

基于深神经网络(DNN)的点云语义分段已在标记为空中激光点云数据集的大规模标记的大规模上取得了重大成就。但是,注释如此大的点云是耗时的。由于密度变化和空中激光扫描(ALS)点云的空间异质性,DNNs缺乏概括能力,因此导致了毫无疑问的语义分割,因为在其他地区直接使用的一个区域中,DNN在一个区域中受过训练。但是,自我监督的学习(SSL)是通过使用未标记的样本进行预先培训的DNN模型,然后是涉及非常有限标签的微调下游任务,通过预训练DNN模型来解决此问题。因此,这项工作提出了一种硬性样本意识到的自我监督对比学习方法,以预先培训语义分割模型。点云的传统对比度学习选择了最难的负样本,仅依靠从学习过程中得出的嵌入式特征之间的距离,可能会从同一类中发展一些负面样本,以降低对比度学习有效性。因此,我们根据K-均值聚类设计了ABSPAN(绝对正和负样本)策略,以滤除可能的假阴性样本。在两个典型的ALS基准数据集上进行的实验表明,所提出的方法比没有预先培训的监督培训方案更具吸引力。尤其是当标签严重不足(占ISPRS培训集的10%)时,拟议的Havana方法获得的结果仍超过了有监督范式性能的94%,并具有完整的培训集。

Deep Neural Network (DNN) based point cloud semantic segmentation has presented significant achievements on large-scale labeled aerial laser point cloud datasets. However, annotating such large-scaled point clouds is time-consuming. Due to density variations and spatial heterogeneity of the Airborne Laser Scanning (ALS) point clouds, DNNs lack generalization capability and thus lead to unpromising semantic segmentation, as the DNN trained in one region underperform when directly utilized in other regions. However, Self-Supervised Learning (SSL) is a promising way to solve this problem by pre-training a DNN model utilizing unlabeled samples followed by a fine-tuned downstream task involving very limited labels. Hence, this work proposes a hard-negative sample aware self-supervised contrastive learning method to pre-train the model for semantic segmentation. The traditional contrastive learning for point clouds selects the hardest negative samples by solely relying on the distance between the embedded features derived from the learning process, potentially evolving some negative samples from the same classes to reduce the contrastive learning effectiveness. Therefore, we design an AbsPAN (Absolute Positive And Negative samples) strategy based on k-means clustering to filter the possible false-negative samples. Experiments on two typical ALS benchmark datasets demonstrate that the proposed method is more appealing than supervised training schemes without pre-training. Especially when the labels are severely inadequate (10% of the ISPRS training set), the results obtained by the proposed HAVANA method still exceed 94% of the supervised paradigm performance with full training set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源