论文标题
准BNS不变
Quasi-BNS invariants
论文作者
论文摘要
我们介绍了准BNS不变性的概念,在bieri-neumann-strebel不变的理论中,我们将同质的同构替换为$ \ Mathbb r $。我们证明,有限生成的组$ g $的准BNS不变$Qς$开放;我们将其连接到几乎有限的均质准态核的有限生成;最终,我们证明了Sikorav风格的定理,将$Qς(g)$连接到适当定义的Novikov同源性的消失。
We introduce the notion of quasi-BNS invariants, where we replace homomorphism to $\mathbb R$ by homogenous quasimorphisms to $\mathbb R$ in the theory of Bieri-Neumann-Strebel invariants. We prove that the quasi-BNS invariant $QΣ(G)$ of a finitely generated group $G$ is open; we connect it to approximate finite generation of almost kernels of homogenous quasimorphisms; finally we prove a Sikorav-style theorem connecting $QΣ(G)$ to the vanishing of the suitably defined Novikov homology.