论文标题

准BNS不变

Quasi-BNS invariants

论文作者

Heuer, Nicolaus, Kielak, Dawid

论文摘要

我们介绍了准BNS不变性的概念,在bieri-neumann-strebel不变的理论中,我们将同质的同构替换为$ \ Mathbb r $。我们证明,有限生成的组$ g $的准BNS不变$Qς$开放;我们将其连接到几乎有限的均质准态核的有限生成;最终,我们证明了Sikorav风格的定理,将$Qς(g)$连接到适当定义的Novikov同源性的消失。

We introduce the notion of quasi-BNS invariants, where we replace homomorphism to $\mathbb R$ by homogenous quasimorphisms to $\mathbb R$ in the theory of Bieri-Neumann-Strebel invariants. We prove that the quasi-BNS invariant $QΣ(G)$ of a finitely generated group $G$ is open; we connect it to approximate finite generation of almost kernels of homogenous quasimorphisms; finally we prove a Sikorav-style theorem connecting $QΣ(G)$ to the vanishing of the suitably defined Novikov homology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源