论文标题

较高尺寸的无限蕨

The infinite fern in higher dimensions

论文作者

Hernandez, Valentin, Schraen, Benjamin

论文摘要

如果$ \ \barρ$是一种自动模型$ P $ GALOIS表示,那么自然而然地想知道自动点点是否在$ \barρ$的变形空间中是Zariski致密。在$ p $的统一集团拆分(和未经夸大)的情况下,我们证明了这一方向的新结果。 Namely, if $\barρ$ is associated to an automorphic form for a unitary group (which contributes to coherent cohomology), we prove that the "infinite fern" (i.e. the image of an appropriate Eigenvariety) in the polarised deformation space of $\barρ$ is Zariski dense in a non-empty union of irreducible components.这特别是Gouvêa-Mazur的概括,以$ GL_2/\ MATHBB Q $,CHENEVIER $ U(3)$(3)$和最近的Hellmann-Margerin-Schraen。新颖性是,我们使用Breuil-Hellmann-Schraen的局部模型来控制局部变形环中的切线空间,以及最初是由于Bellaïche-Chenevier和Taïbi而引起的对特征变量的几何论点,以减少具有巨大图像的点。在这些地方,我们可以使用牛顿 - 索恩(Newton-Thorne)的最新结果来控制一个塞尔默(Selmer)群体的消失。特别是,我们不需要在$ \barρ$上假设任何“泰勒 - 韦尔斯”假设,这尤其是不可约束的。如果我们在$ \barρ$上添加泰勒 - 韦尔斯假设,并以$ p $添加额外的假设,则由于艾伦到处都是扎里斯基密度的结果。

If $\barρ$ is an automorphic modulo $p$ Galois representation, it is natural to wonder if automorphic points are Zariski dense in the deformation space of $\barρ$. We prove new results in this direction in the case of a unitary group split (and unramified) at $p$. Namely, if $\barρ$ is associated to an automorphic form for a unitary group (which contributes to coherent cohomology), we prove that the "infinite fern" (i.e. the image of an appropriate Eigenvariety) in the polarised deformation space of $\barρ$ is Zariski dense in a non-empty union of irreducible components. This generalises in particular results of Gouvêa-Mazur for $GL_2/\mathbb Q$, Chenevier for $U(3)$ and recently Hellmann-Margerin-Schraen. The novelty is that we use the local model of Breuil-Hellmann-Schraen to control tangent spaces in the local deformation rings, and a geometric argument on the Eigenvariety originally due to Bellaïche-Chenevier and Taïbi to reduce to points with enormous image. At those points, we can use a recent result of Newton-Thorne to control the vanishing of a Selmer group. In particular, we do not need to assume any "Taylor-Wiles" hypothesis on $\barρ$, which can in particular be irreducible. If we moreover add Taylor-Wiles hypothesis on $\barρ$ and an extra hypothesis at $p$, we have by a result of Allen the Zariski density everywhere.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源