论文标题

具有几何解释的神经感知的视觉宣传

Visual Servoing with Geometrically Interpretable Neural Perception

论文作者

Paolillo, Antonio, Nava, Mirko, Piga, Dario, Giusti, Alessandro

论文摘要

越来越多的非专业机器人用户需要易于使用的机器。在视觉宣传活动的背景下,清除明确的图像处理已成为一种趋势,从而可以轻松应用此技术。这项工作提出了一种深入的学习方法,用于解决视觉宣传方案中的感知问题。人工神经网络是使用控制器知识和视觉特征运动模型的监督训练的。通过这种方式,可以对估计的视觉特征进行几何解释,该特征可用于视觉宣誓的分析定律。该方法保持感知和控制脱钩,在整个框架上赋予灵活性和解释性。使用机器人操纵器进行模拟和真实的实验验证了我们的方法。

An increasing number of nonspecialist robotic users demand easy-to-use machines. In the context of visual servoing, the removal of explicit image processing is becoming a trend, allowing an easy application of this technique. This work presents a deep learning approach for solving the perception problem within the visual servoing scheme. An artificial neural network is trained using the supervision coming from the knowledge of the controller and the visual features motion model. In this way, it is possible to give a geometrical interpretation to the estimated visual features, which can be used in the analytical law of the visual servoing. The approach keeps perception and control decoupled, conferring flexibility and interpretability on the whole framework. Simulated and real experiments with a robotic manipulator validate our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源