论文标题

使用McKean-Markov分支抽样解决Feynman-kac向后SDE

Solving Feynman-Kac Forward Backward SDEs Using McKean-Markov Branched Sampling

论文作者

Hawkins, Kelsey P., Pakniyat, Ali, Theodorou, Evangelos, Tsiotras, Panagiotis

论文摘要

我们提出了一种新方法,用于在随机最佳控制问题中出现在feynman-kac表示中的前向后随机微分方程(FBSDE)的数值解。使用吉尔萨诺夫(Girsanov)的概率措施的改变,只要在向后集成中适当补偿了麦基·玛科夫(McKean-Markov)分支采样方法如何用于向前集成通行证。随后,通过沿着由轨迹样本组成的空间填充树的边缘向后求后,提出了值函数的数值近似。此外,开发了局部熵加权最小二乘蒙特卡洛(LSMC)方法,以浓缩功能近似精度,最有可能通过最佳控制的轨迹访问。在非二次运行成本的线性和非线性随机最佳控制问题上,在数值上证明了所提出的方法,这些方法揭示了对以前基于FBSDE的数值解决方案方法的显着收敛改善。

We propose a new method for the numerical solution of the forward-backward stochastic differential equations (FBSDE) appearing in the Feynman-Kac representation of the value function in stochastic optimal control problems. Using Girsanov's change of probability measures, it is demonstrated how a McKean-Markov branched sampling method can be utilized for the forward integration pass, as long as the controlled drift term is appropriately compensated in the backward integration pass. Subsequently, a numerical approximation of the value function is proposed by solving a series of function approximation problems backwards in time along the edges of a space-filling tree consisting of trajectory samples. Moreover, a local entropy-weighted least squares Monte Carlo (LSMC) method is developed to concentrate function approximation accuracy in regions most likely to be visited by optimally controlled trajectories. The proposed methodology is numerically demonstrated on linear and nonlinear stochastic optimal control problems with non-quadratic running costs, which reveal significant convergence improvements over previous FBSDE-based numerical solution methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源