论文标题
旋转气泡捕获的超流体中的赤道波
Equatorial Waves in Rotating Bubble-Trapped Superfluids
论文作者
论文摘要
当地球旋转时,科里奥利的力会导致几个海洋和大气波被困在赤道,包括开尔文,亚奈,罗斯比和庞加莱模式。已经证明,这些波的数学起源与潜在的流体动力方程的非平凡拓扑有关。受到微重力超低量子气实验中气泡形陷阱中Bose-Einstein凝结(BEC)的最新观察的启发,我们表明赤道模式受到球形几何形状中快速旋转的冷凝水的支持。基于零温度的粗粒流体动力框架,我们重新制定了超流体的耦合振荡和由Schrödinger样的特征值问题旋转而导致的Abrikosov涡旋晶格。所获得的非热汉尔顿族人在拓扑上是非平凡的。此外,我们为球形几何形状求解流体动力方程,并发现旋转的超流体载有kelvin,Yanai和Poincaré赤道模式,而不是Rossby模式。我们的预测可以通过最先进的气泡形状的BEC实验来测试。
As the Earth rotates, the Coriolis force causes several oceanic and atmospheric waves to be trapped along the equator, including Kelvin, Yanai, Rossby, and Poincaré modes. It has been demonstrated that the mathematical origin of these waves is related to the nontrivial topology of the underlying hydrodynamic equations. Inspired by recent observations of Bose-Einstein condensation (BEC) in bubble-shaped traps in microgravity ultracold quantum gas experiments, we show that equatorial modes are supported by a rapidly rotating condensate in a spherical geometry. Based on a zero-temperature coarse-grained hydrodynamic framework, we reformulate the coupled oscillations of the superfluid and the Abrikosov vortex lattice resulting from rotation by a Schrödinger-like eigenvalue problem. The obtained non-Hermitian Hamiltonian is topologically nontrivial. Furthermore, we solve the hydrodynamic equations for a spherical geometry and find that the rotating superfluid hosts Kelvin, Yanai, and Poincaré equatorial modes, but not the Rossby mode. Our predictions can be tested with state-of-the-art bubble-shaped trapped BEC experiments.