论文标题

面对面:姿势和闭塞意见高富达面部交换

FaceDancer: Pose- and Occlusion-Aware High Fidelity Face Swapping

论文作者

Rosberg, Felix, Aksoy, Eren Erdal, Alonso-Fernandez, Fernando, Englund, Cristofer

论文摘要

在这项工作中,我们提出了一种新的单阶段方法,用于主题不可知的面部交换和身份转移,名为FaceDancer。我们有两个主要贡献:自适应特征融合注意(AFFA)和解释特征相似性正则化(IFSR)。 AFFA模块嵌入解码器中,并自适应地学习以融合属性功能和功能,而不需要任何其他面部分割过程。在IFSR中,我们利用身份编码器中的中间特征来保留重要属性,例如头部姿势,面部表达,照明和目标面上的遮挡,同时仍以高保真度转移源面的身份。我们在各种数据集上进行了广泛的定量和定性实验,并表明所提出的面对面的人在身份转移方面优于其他最先进的网络,同时比以前的大多数方法具有明显更好的姿势保存。

In this work, we present a new single-stage method for subject agnostic face swapping and identity transfer, named FaceDancer. We have two major contributions: Adaptive Feature Fusion Attention (AFFA) and Interpreted Feature Similarity Regularization (IFSR). The AFFA module is embedded in the decoder and adaptively learns to fuse attribute features and features conditioned on identity information without requiring any additional facial segmentation process. In IFSR, we leverage the intermediate features in an identity encoder to preserve important attributes such as head pose, facial expression, lighting, and occlusion in the target face, while still transferring the identity of the source face with high fidelity. We conduct extensive quantitative and qualitative experiments on various datasets and show that the proposed FaceDancer outperforms other state-of-the-art networks in terms of identityn transfer, while having significantly better pose preservation than most of the previous methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源