论文标题

距离首先可分解的类映射空间的距离

Distances to spaces of first resolvable class mappings

论文作者

Ludvík, Pavel

论文摘要

我们研究了G. koumoullis定义的第一个可解析类的映射,是解决不可渗透环境中连续性属性的宝贵工具。首先,我们通过\ emph {fragmositibal}数量研究了对第一个可分离类映射的一般映射的距离。我们部分概括了B. Cascales的论文,W。Marciszewski,M。Raja; C. Angosto,B。Cascales,I。Namioka;和J.Spurný。其次,我们介绍了具有可数振荡等级的映射类,研究其基本属性,并将其与第一类可分解类和其他知名映射类的映射相关联。 S. Argyros,R。Haydon等。

We study the mappings of the first resolvable class defined by G. Koumoullis as a valuable tool to address the point of continuity property in the non-metrizable setting. First, we investigate the distance of a general mapping to the family of mappings of the first resolvable class via the \emph{fragmentability} quantity. We partially generalize papers of B. Cascales, W. Marciszewski, M. Raja; C. Angosto, B. Cascales, I. Namioka; and J. Spurný. Second, we introduce the class of mappings with the countable oscillation rank, study its basic properties and relate it to the mappings of the first resolvable class and other well known classes of mappings. This rank has been in a less general context considered by S.~A. Argyros, R. Haydon and some others.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源