论文标题
加速具有最大并行性的无缺陷原子阵列的组装
Accelerating the assembly of defect-free atomic arrays with maximum parallelisms
论文作者
论文摘要
无缺陷原子阵列已被证明是用于量子模拟和量子计算的可扩展且完全可控的平台。为了进一步推动该平台的量子大小限制,我们根据现场可编程门数阵列(FPGA)设计了一个集成的测量和反馈系统,以快速使用最大并行性组装二维无缺陷原子阵列。首先,通过处理原子检测,原子占用分析,重排策略制定和声音偏转器(AOD)驱动信号在及时并行产生信号。然后,通过同时在同一行中移动多个原子(列),我们通过并行在空间中节省重排时间。为了最好地利用这些并行性,我们提出了一种名为Tetris算法的新算法将原子重新组合到来自二维随机加载的原子阵列的任意目标阵列几何形状。对于$ l \ times l $目标阵列几何形状,移动量表为$ l $,最多最多为$ l^2 $。我们介绍了不同目标几何形状的整体性能,并证明了重排时间的显着减少,并有可能扩大无缺陷的原子阵列系统到数千个Qubits。
Defect-free atomic arrays have been demonstrated as a scalable and fully-controllable platform for quantum simulations and quantum computations. To push the qubit size limit of this platform further, we design an integrated measurement and feedback system, based on field programmable gate array (FPGA), to quickly assemble two-dimensional defect-free atomic array using maximum parallelisms. The total time cost of the rearrangement is first reduced by processing atom detection, atomic occupation analysis, rearrangement strategy formulation, and acousto-optic deflectors (AOD) driving signal generation in parallel in time. Then, by simultaneously moving multiple atoms in the same row (column), we save rearrangement time by parallelism in space. To best utilize these parallelisms, we propose a new algorithm named Tetris algorithm to reassemble atoms to arbitrary target array geometry from two-dimensional stochastically loaded atomic arrays. For an $L \times L$ target array geometry, the number of moves scales as $L$, and the total rearrangement time scales at most as $L^2$. We present the overall performance for different target geometries, and demonstrate a significant reduction in rearrangement time and the potential to scale up defect-free atomic array system to thousands of qubits.