论文标题
可解释的插槽类型注意,以改善关节意图检测和插槽填充
Explainable Slot Type Attentions to Improve Joint Intent Detection and Slot Filling
论文作者
论文摘要
联合意图检测和插槽填充是自然语言理解(NLU)的关键研究主题。现有的关节意图和插槽填充系统共同分析和计算所有插槽类型的功能,重要的是,没有办法解释插槽填充模型决策。在这项工作中,我们提出了一种新颖的方法:(i)学会生成其他插槽类型的特定功能,以提高准确性,(ii)在联合NLU模型中首次为插槽填充决策提供了解释。我们使用一组二进制分类器对插槽类型特定特征学习进行额外的约束监督,从而确保在此过程中学习适当的注意力权重,以解释插槽填充说话的插槽填充决策。我们的模型本质上可以解释,不需要任何事后处理。我们在两个广泛使用的数据集上评估了我们的方法,并显示了准确性的提高。此外,还为独家插槽解释性提供了详细的分析。
Joint intent detection and slot filling is a key research topic in natural language understanding (NLU). Existing joint intent and slot filling systems analyze and compute features collectively for all slot types, and importantly, have no way to explain the slot filling model decisions. In this work, we propose a novel approach that: (i) learns to generate additional slot type specific features in order to improve accuracy and (ii) provides explanations for slot filling decisions for the first time in a joint NLU model. We perform an additional constrained supervision using a set of binary classifiers for the slot type specific feature learning, thus ensuring appropriate attention weights are learned in the process to explain slot filling decisions for utterances. Our model is inherently explainable and does not need any post-hoc processing. We evaluate our approach on two widely used datasets and show accuracy improvements. Moreover, a detailed analysis is also provided for the exclusive slot explainability.