论文标题

贝叶斯通过概率重新聚体优化了离散和混合空间的优化

Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic Reparameterization

论文作者

Daulton, Samuel, Wan, Xingchen, Eriksson, David, Balandat, Maximilian, Osborne, Michael A., Bakshy, Eytan

论文摘要

优化离散(和潜在连续)设计参数的昂贵评估的黑盒功能是科学和工程应用中无处不在的问题。贝叶斯优化(BO)是一种流行的样品效率方法,它利用概率替代模型和采集函数(AF)选择有希望的设计来评估。但是,将AF在混合或高电线性离散搜索空间上最大化是挑战基于标准梯度的方法,无法直接使用或在搜索空间中的每个点评估AF的计算都在计算上是过于刺激的。为了解决这个问题,我们建议使用概率重新聚集化(PR)。与其在包含离散参数的搜索空间上直接优化AF,而是最大程度地提高了AF对由连续参数定义的概率分布的期望。我们证明,在适当的重新聚体化下,最大化概率目标的BO政策与最大化AF的目标相同,因此,PR与使用基础AF的原始BO政策相同的遗憾界限。此外,我们的方法可证明使用概率目标及其梯度的可伸缩,无偏估计量在梯度上升下概率目标的固定点。因此,随着起点和梯度步骤的数量的增加,我们的方法将恢复AF的最大化器(通常是常用的BO遗憾界限所必需的必要条件)。我们通过经验验证我们的方法,并在广泛的现实应用程序上展示了最新的优化性能。 PR与最近的工作(和好处)相辅相成,自然而然地将其推广到具有多个目标和黑箱约束的设置。

Optimizing expensive-to-evaluate black-box functions of discrete (and potentially continuous) design parameters is a ubiquitous problem in scientific and engineering applications. Bayesian optimization (BO) is a popular, sample-efficient method that leverages a probabilistic surrogate model and an acquisition function (AF) to select promising designs to evaluate. However, maximizing the AF over mixed or high-cardinality discrete search spaces is challenging standard gradient-based methods cannot be used directly or evaluating the AF at every point in the search space would be computationally prohibitive. To address this issue, we propose using probabilistic reparameterization (PR). Instead of directly optimizing the AF over the search space containing discrete parameters, we instead maximize the expectation of the AF over a probability distribution defined by continuous parameters. We prove that under suitable reparameterizations, the BO policy that maximizes the probabilistic objective is the same as that which maximizes the AF, and therefore, PR enjoys the same regret bounds as the original BO policy using the underlying AF. Moreover, our approach provably converges to a stationary point of the probabilistic objective under gradient ascent using scalable, unbiased estimators of both the probabilistic objective and its gradient. Therefore, as the number of starting points and gradient steps increase, our approach will recover of a maximizer of the AF (an often-neglected requisite for commonly used BO regret bounds). We validate our approach empirically and demonstrate state-of-the-art optimization performance on a wide range of real-world applications. PR is complementary to (and benefits) recent work and naturally generalizes to settings with multiple objectives and black-box constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源