论文标题
巨大质子生长过程中的情节增生和合并
Episodic accretion and mergers during growth of massive protostars
论文作者
论文摘要
3D对高质量年轻恒星物体(HMYSO)生长的模拟表明,它们的偶尔盘将碎片碎片碎片到多个自我磨碎的物体上。 Hyso对这些的积聚可能解释了最近发现的情节积聚爆发。我们的后处理结果是先前的3D模拟HYSO碟片,其1D代码将圆盘和对象动态解析至恒星表面。我们发现,在3D模拟中看到的材料的爆发样沉积本身并不总是表示强大的积聚爆发。只有越过内部计算边界的高密度折叠后团块可能会导致可观察到的爆发。内部光盘的丰富物理学对预期的积聚爆发有重大影响:(1)在标准的湍流粘度盘中,迁移物体可以在迁移陷阱处停滞在距离恒星几个AU的距离。但是,在由磁性风能提供动力的盘中,这些物体能够越过陷阱并产生类似于到目前为止观察到的圆盘。 (2)迁移的物体可以与内盘的热(氢气离子化)不稳定性相互作用,这可能导致持续时间更长的持续时间和较低的Hmysos亮度爆发。 (3)如果中央恒星通过上一个高积聚率的一集将au的一部分肿成一小部分,或者迁移对象特别致密,则合并而不是盘介导的积聚爆发结果; (4)物体破坏爆发可能是超级 - 埃德丁顿,从而通过强大的外流导致Hyso环境的情节反馈。
3D simulations of high mass young stellar object (HMYSO) growth show that their circumstellar discs fragment onto multiple self-gravitating objects. Accretion of these by HMYSO may explain episodic accretion bursts discovered recently. We post-process results of a previous 3D simulation of a HMYSO disc with a 1D code that resolves the disc and object dynamics down to the stellar surface. We find that burst-like deposition of material into the inner disc seen in 3D simulations by itself does not always signify powerful accretion bursts. Only high density post-collapse clumps crossing the inner computational boundary may result in observable bursts. The rich physics of the inner disc has a significant impact on the expected accretion bursts: (1) In the standard turbulent viscosity discs, migrating objects can stall at a migration trap at the distance of a few au from the star. However, in discs powered by magnetised winds, the objects are able to cross the trap and produce bursts akin to those observed so far. (2) Migrating objects may interact with and modify the thermal (hydrogen ionisation) instability of the inner disc, which can be responsible for longer duration and lower luminosity bursts in HMYSOs. (3) If the central star is bloated to a fraction of an au by a previous episode of high accretion rate, or if the migrating object is particularly dense, a merger rather than a disc-mediated accretion burst results; (4) Object disruption bursts may be super-Eddington, leading to episodic feedback on HMYSO surroundings via powerful outflows.