论文标题
非参数分位数回归:非交叉约束和保形预测
Nonparametric Quantile Regression: Non-Crossing Constraints and Conformal Prediction
论文作者
论文摘要
我们建议使用具有整流的线性单位惩罚函数的深神经网络提出一种非参数分位数回归方法,以避免分数交叉。这种惩罚函数在计算上是可行的,对于在多维非参数分位回归中执行非划分约束。我们为提出的非参数分位数回归函数估计器的过量风险建立了非反应上限。我们的误差界限实现了持有人类的最佳最小收敛速率,并且误差界的预成分界面因子在多个方面取决于预测变量的尺寸,而不是指数级。基于提出的非划分惩罚的深度分位数回归,我们构建了完全适应异质性的共形预测间隔。在合理条件下,提出的预测间隔在有效性和准确性方面具有良好的特性。我们还为提出的非交叉共形预测间隔与理论上的甲骨文预测间隔之间的长度差而得出了非质子上限。进行了数值实验,包括模拟研究和实际数据示例,以证明所提出的方法的有效性。
We propose a nonparametric quantile regression method using deep neural networks with a rectified linear unit penalty function to avoid quantile crossing. This penalty function is computationally feasible for enforcing non-crossing constraints in multi-dimensional nonparametric quantile regression. We establish non-asymptotic upper bounds for the excess risk of the proposed nonparametric quantile regression function estimators. Our error bounds achieve optimal minimax rate of convergence for the Holder class, and the prefactors of the error bounds depend polynomially on the dimension of the predictor, instead of exponentially. Based on the proposed non-crossing penalized deep quantile regression, we construct conformal prediction intervals that are fully adaptive to heterogeneity. The proposed prediction interval is shown to have good properties in terms of validity and accuracy under reasonable conditions. We also derive non-asymptotic upper bounds for the difference of the lengths between the proposed non-crossing conformal prediction interval and the theoretically oracle prediction interval. Numerical experiments including simulation studies and a real data example are conducted to demonstrate the effectiveness of the proposed method.