论文标题

神经元网络的优化和概括

Optimisation & Generalisation in Networks of Neurons

论文作者

Bernstein, Jeremy

论文摘要

本文的目的是开发人工神经网络中学习的优化和概括理论基础。在优化时,提出了一个新的理论框架,以推导依赖体系结构的一阶优化算法。该方法通过将损耗函数的“功能性大量化”与“体系结构扰动边界”相结合,该方法对神经体系结构进行了明确的依赖。该框架产生了优化方法,可以将超参数转移到学习问题上。关于概括,在网络和各个网络的集合之间提出了新的对应关系。有人认为,随着网络宽度和归一化边缘的占据很大,特定训练集的网络空间集中在一种汇总的贝叶斯方法上,称为“贝叶斯点机”。该通信提供了将Pac-Bayesian泛化定理转移到单个网络的途径。更广泛地说,该对应关系对正则化在具有比数据更多的网络中的作用提出了新的观点。

The goal of this thesis is to develop the optimisation and generalisation theoretic foundations of learning in artificial neural networks. On optimisation, a new theoretical framework is proposed for deriving architecture-dependent first-order optimisation algorithms. The approach works by combining a "functional majorisation" of the loss function with "architectural perturbation bounds" that encode an explicit dependence on neural architecture. The framework yields optimisation methods that transfer hyperparameters across learning problems. On generalisation, a new correspondence is proposed between ensembles of networks and individual networks. It is argued that, as network width and normalised margin are taken large, the space of networks that interpolate a particular training set concentrates on an aggregated Bayesian method known as a "Bayes point machine". This correspondence provides a route for transferring PAC-Bayesian generalisation theorems over to individual networks. More broadly, the correspondence presents a fresh perspective on the role of regularisation in networks with vastly more parameters than data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源