论文标题
一个四个隔室流行模型,过渡速率延迟
A four compartment epidemic model with retarded transition rates
论文作者
论文摘要
我们通过考虑其健康状态的个人的四个隔室来研究一个恒定人群的流行模型。每个人都在一个易感性的隔间之一中;孵育 - 感染但未传染(C),感染和感染性(I),并回收 - 免疫(R)。只有当一个人处于状态I时,感染才“可见”。在感染后,一个人在每个隔室C,i和r中分别在某些随机等待时间中执行过渡途径s至i至r的c。每个隔室的等待时间是独立的,并从特定概率密度函数(PDF)中绘制出来,将存储器引入模型。我们得出涉及卷积(一般分数类型的时间导数)的记忆演化方程。我们获得了特有均衡的公式,并且在等待时间PDF具有现有手段的情况下,它的存在条件。我们分析了健康和地方性平衡的稳定性,并得出了振荡状态(HOPF)不稳定的条件。我们将随机的SCIR等待时间在计算机模拟中实现了一个简单的多个随机助推器方法(Z独立步行者的布朗运动的微观模型)。感染是通过隔室I和S中的步行者碰撞的一定概率而发生的。我们将宏观模型中预测的特有状态与模拟的数值结果进行了比较,并找到了高精度的符合性。我们得出的结论是,一种简单的随机助推器方法为宏观模型提供了适当的微观描述。
We study an epidemic model for a constant population by taking into account four compartments of the individuals characterizing their states of health. Each individual is in one of the compartments susceptible (S); incubated - infected yet not infectious (C), infected and infectious (I), and recovered - immune (R). An infection is 'visible' only when an individual is in state I. Upon infection, an individual performs the transition pathway S to C to I to R to S remaining in each compartments C, I, and R for certain random waiting times, respectively. The waiting times for each compartment are independent and drawn from specific probability density functions (PDFs) introducing memory into the model. We derive memory evolution equations involving convolutions (time derivatives of general fractional type). We obtain formulae for the endemic equilibrium and a condition of its existence for cases when the waiting time PDFs have existing means. We analyze the stability of healthy and endemic equilibria and derive conditions for which the endemic state becomes oscillatory (Hopf) unstable. We implement a simple multiple random walker's approach (microscopic model of Brownian motion of Z independent walkers) with random SCIRS waiting times into computer simulations. Infections occur with a certain probability by collisions of walkers in compartments I and S. We compare the endemic states predicted in the macroscopic model with the numerical results of the simulations and find accordance of high accuracy. We conclude that a simple random walker's approach offers an appropriate microscopic description for the macroscopic model.