论文标题

$ \ mathrm {sl} _2(\ mathbb {c})$的兼容裤子分解

Compatible pants decompositions for $\mathrm{SL}_2(\mathbb{C})$-representations of surface groups

论文作者

Detcherry, Renaud, Fils, Thomas Le, Santharoubane, Ramanujan

论文摘要

对于将表面组的任何不可约定表示为$ \ mathrm {sl} _2(\ mathbb {c})$,我们表明存在一个裤子分解,其中对任何一对裤子的限制是不可修复的,而分解的曲线无需发送到跟踪$ \ pm pm 2 $ element。我们证明了$ \ mathrm {so} _3 $ -presentations的类似属性。我们还调查了在此设置中可能发生的给定表示形式的裤子分解类型。这一结果是在先前的第一和第三名作者的论文中宣布的,该论文是由统一根部的Skein代数的Azumaya基因座进行的。

For any irreducible representation of a surface group into $\mathrm{SL}_2(\mathbb{C})$, we show that there exists a pants decomposition where the restriction to any pair of pants is irreducible and where no curve of the decomposition is sent to a trace $\pm 2$ element. We prove a similar property for $\mathrm{SO}_3$-representations. We also investigate the type of pants decomposition that can occur in this setting for a given representation. This result was announced in a previous paper of the first and third named authors, motivated by the study of the Azumaya locus of the skein algebra of surfaces at roots of unity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源