论文标题
接近实时CO $ _2 $基于碳卫星和人工智能的排放
Near Real-time CO$_2$ Emissions Based on Carbon Satellite and Artificial Intelligence
论文作者
论文摘要
为了将全球变暖限制为工业前的水平,全球政府,工业和学术界正在采取积极的努力来减少碳排放。但是,人为二氧化碳(CO $ _2 $)排放的评估取决于并非总是可靠的自我报告信息。社会需要开发一个客观,独立和广义的系统,以$ _2 $排放。卫星公司$ _2 $从太空观察,报告了列平均区域CO $ _2 $ DRY-AIR MOLE STROCTIONS逐渐表明了其建立此类系统的潜力。然而,估计来自Co $ _2 $观察卫星的人为CO $ _2 $排放是由于大气活动的高度复杂物理特征的影响所瓶颈。在这里,我们提供了将高级人工智能(AI)技术和碳卫星监视器结合起来的第一种方法,以量化人为的CO $ _2 $排放。我们提出了一个基于AI的积分管道,其中包含数据检索算法和两步数据驱动的解决方案。首先,数据检索算法可以从多模式数据(包括碳卫星,碳源信息和几个环境因素)中生成有效的数据集。其次,采用深度学习技术的强大表示以学习量化人为CO $ _2 $从卫星公司$ _2 $观察与其他因素量化的人为co $ _2 $排放的两步数据驱动的解决方案。我们的工作揭示了基于深度学习算法和碳卫星监视器的组合来量化CO $ _2 $排放的潜力。
To limit global warming to pre-industrial levels, global governments, industry and academia are taking aggressive efforts to reduce carbon emissions. The evaluation of anthropogenic carbon dioxide (CO$_2$) emissions, however, depends on the self-reporting information that is not always reliable. Society need to develop an objective, independent, and generalized system to meter CO$_2$ emissions. Satellite CO$_2$ observation from space that reports column-average regional CO$_2$ dry-air mole fractions has gradually indicated its potential to build such a system. Nevertheless, estimating anthropogenic CO$_2$ emissions from CO$_2$ observing satellite is bottlenecked by the influence of the highly complicated physical characteristics of atmospheric activities. Here we provide the first method that combines the advanced artificial intelligence (AI) techniques and the carbon satellite monitor to quantify anthropogenic CO$_2$ emissions. We propose an integral AI based pipeline that contains both a data retrieval algorithm and a two-step data-driven solution. First, the data retrieval algorithm can generate effective datasets from multi-modal data including carbon satellite, the information of carbon sources, and several environmental factors. Second, the two-step data-driven solution that applies the powerful representation of deep learning techniques to learn to quantify anthropogenic CO$_2$ emissions from satellite CO$_2$ observation with other factors. Our work unmasks the potential of quantifying CO$_2$ emissions based on the combination of deep learning algorithms and the carbon satellite monitor.