论文标题

非弹性和多物种混合物玻尔兹曼方程的高速尾巴

High-velocity tails of the inelastic and the multi-species mixture Boltzmann equations

论文作者

An, Gayoung, Lee, Donghyun

论文摘要

我们研究了$ v \ in \ mathbb {r} _ {v}^d $ in $ v \ in $ v \ of $ v \ of $ v \ to boltzmann方程的高速尾。首先,在中等软势的情况下,我们考虑具有非Cutoff碰撞内核的空间均匀非弹性玻尔兹曼方程。我们还研究了空间均匀的混合物玻尔兹曼方程:对于具有适度柔软电势的非cutoff碰撞内核,且具有硬势的截止碰撞内核。在非弹性非弹性玻尔兹曼的情况下,我们获得了 \ [ f(t,v)\ geq a(t)e^{ - b(t)| v |^p},\ quad 2 <p <6.213 \] 通过扩展取消引理并扩散引理并假设在c^{\ infty} $中假设$ f \。对于混合物类型的Boltzmann方程式,我们证明Maxwellian $ P = 2 $。

We study high-velocity tails of some homogeneous Boltzmann equations on $v \in \mathbb{R}_{v}^d$. First, we consider spatially homogeneous inelastic Boltzmann equation with noncutoff collision kernel, in the case of moderately soft potentials. We also study spatially homogeneous mixture Boltzmann equations : for both noncutoff collision kernel with moderately soft potentials and cutoff collision kernel with hard potentials. In the case of noncutoff inelastic Boltzmann, we obtain \[ f(t,v) \geq a(t) e^{-b(t)|v|^p}, \quad 2 < p < 6.213 \] by extending Cancellation lemma and spreading lemma and assuming $f\in C^{\infty}$. For the Mixture type Boltzmann equations, we prove Maxwellian $p=2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源