论文标题

通过随机相位近似校正广义的多体色散校正,以实现化学精确的密度理论

Generalized Many-Body Dispersion Correction through Random-phase Approximation for Chemically Accurate Density Functional Theory

论文作者

Poier, Pier Paolo, Lagardère, Louis, Piquemal, Jean-Philip

论文摘要

我们使用广义的随机相位近似(RPA)形式主义将最近提出的深度学习辅助多体色散(DNN-MBD)模型扩展到四极极化性(Q)项,从而使范德华的贡献包括在偶极子之外。所得的DNN-MBDQ模型仅依赖于从头启用的数量,因为引入的四极极化是从偶极子递回检索的,进而通过Tkatchenko-Scheffler方法建模。可转移且有效的深神经网络(DNN)提供了分子体积的原子,而单个范围分离参数则用于将模型搭配到密度功能理论(DFT)。由于可以以微不足道的成本计算,因此DNN-MBDQ方法可以与DFT功能(例如PBE,PBE0和B86BPBE(无分散))结合使用。与仅偶极子的功能相比,通过DNN-MBQ校正的功能达到化学精度,同时表现出较低的误差。

We extend our recently proposed Deep Learning-aided many-body dispersion (DNN-MBD) model to quadrupole polarizability (Q) terms using a generalized Random Phase Approximation (RPA) formalism, thus enabling the inclusion of van der Waals contributions beyond dipole. The resulting DNN-MBDQ model only relies on ab initio-derived quantities as the introduced quadrupole polarizabilities are recursively retrieved from dipole ones, in turn modelled via the Tkatchenko-Scheffler method. A transferable and efficient deep-neuronal network (DNN) provides atom in molecule volumes, while a single range-separation parameter is used to couple the model to Density Functional Theory (DFT). Since it can be computed at a negligible cost, the DNN-MBDQ approach can be coupled with DFT functionals such as PBE,PBE0 and B86bPBE (dispersionless). The DNN-MBQ-corrected functionals reach chemical accuracy while exhibiting lower errors compared to their dipole-only counterparts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源