论文标题

虚拟现实通过对象姿势估计和主动学习:通过空中操纵能力实现远程敏感机器人

Virtual Reality via Object Pose Estimation and Active Learning: Realizing Telepresence Robots with Aerial Manipulation Capabilities

论文作者

Lee, Jongseok, Balachandran, Ribin, Kondak, Konstantin, Coelho, Andre, De Stefano, Marco, Humt, Matthias, Feng, Jianxiang, Asfour, Tamim, Triebel, Rudolph

论文摘要

本文介绍了一种新型的触觉系统,用于在动态和非结构化环境中推进空中操纵。提出的系统不仅具有触觉设备,还具有虚拟现实(VR)界面,可提供机器人工作区的实时3D显示以及对其远程操作员的触觉指导。为了意识到这一点,使用了多个传感器,即使用激光镜头,相机和IMU。为了处理获得的感官数据,为已知和未知几何形状的工业对象设计了姿势估计管道。我们进一步提出了一条主动学习管道,以提高依赖基于深神经网络(DNN)对象检测的管道组件的样本效率。所有这些算法共同解决了在工业场景中执行感知任务期间遇到的各种挑战。在实验中,提供了详尽的消融研究来验证所提出的管道。从方法上讲,这些结果通常表明如何使用对算法的“自身失败和不确定性(“内省”)的意识,可以解决遇到的问题。此外,进行了室外实验,以评估整个系统在增强空中操纵能力方面的有效性。特别是,通过白天和夜晚的飞行活动,从春季到冬季,以及不同的用户和位置,我们通过DLR电缆悬浮的空中操纵器(SAM)展示了70多次强大的拾取,强制应用程序和孔洞钉钉的执行。结果,我们在未来的工业应用中显示了拟议系统的生存能力。

This article presents a novel telepresence system for advancing aerial manipulation in dynamic and unstructured environments. The proposed system not only features a haptic device, but also a virtual reality (VR) interface that provides real-time 3D displays of the robot's workspace as well as a haptic guidance to its remotely located operator. To realize this, multiple sensors namely a LiDAR, cameras and IMUs are utilized. For processing of the acquired sensory data, pose estimation pipelines are devised for industrial objects of both known and unknown geometries. We further propose an active learning pipeline in order to increase the sample efficiency of a pipeline component that relies on Deep Neural Networks (DNNs) based object detection. All these algorithms jointly address various challenges encountered during the execution of perception tasks in industrial scenarios. In the experiments, exhaustive ablation studies are provided to validate the proposed pipelines. Methodologically, these results commonly suggest how an awareness of the algorithms' own failures and uncertainty (`introspection') can be used tackle the encountered problems. Moreover, outdoor experiments are conducted to evaluate the effectiveness of the overall system in enhancing aerial manipulation capabilities. In particular, with flight campaigns over days and nights, from spring to winter, and with different users and locations, we demonstrate over 70 robust executions of pick-and-place, force application and peg-in-hole tasks with the DLR cable-Suspended Aerial Manipulator (SAM). As a result, we show the viability of the proposed system in future industrial applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源