论文标题

桥梁三口和Seifert固体

Bridge trisections and Seifert solids

论文作者

Joseph, Jason, Meier, Jeffrey, Miller, Maggie, Zupan, Alexander

论文摘要

我们适应了Seifert的算法,用于经典结,并链接到四个球体中桥梁三裂表面的三平面图设置。我们的方法允许构建由Heegaard图描述的Seifert固体。可以认为所产生的固体具有可以在没有3柄的情况下建造的外部。相比之下,我们举例说明了塞弗固体(不是来自我们的结构)的示例,这些固体需要任意许多3处理器。我们以两个分类结果得出结论。第一个表明,承认双标准阴影图的表面没有打结。第二个说,某些扇区包含至少$ b-1 $补丁的A $ b $桥梁的三角形是完全可分解的,因此相应的表面没有打结。这肯定地解决了第二和第四作者的猜想。

We adapt Seifert's algorithm for classical knots and links to the setting of tri-plane diagrams for bridge trisected surfaces in the 4-sphere. Our approach allows for the construction of a Seifert solid that is described by a Heegaard diagram. The Seifert solids produced can be assumed to have exteriors that can be built without 3-handles; in contrast, we give examples of Seifert solids (not coming from our construction) whose exteriors require arbitrarily many 3-handles. We conclude with two classification results. The first shows that surfaces admitting doubly-standard shadow diagrams are unknotted. The second says that a $b$-bridge trisection in which some sector contains at least $b-1$ patches is completely decomposable, thus the corresponding surface is unknotted. This settles affirmatively a conjecture of the second and fourth authors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源