论文标题
部分可观测时空混沌系统的无模型预测
Two CLTs for Sparse Random Matrices
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Let $G=G(n,p_n)$ be a homogeneous Erdös-Rényi graph, and $A$ its adjacency matrix with eigenvalues $λ_1(A) \geq λ_2(A) \geq ... \geq λ_n(A).$ Local laws have been used to show that $lambda_2(A)$ can exhibit fundamentally different behaviors: Tracy-Widom ($p_n \gg n^{-2/3}$), normal ($n^{-7/9} \ll p_n \ll~n^{-2/3}$), and a mix of both ($p_n=cn^{-2/3}$). Additionally, this technique renders the largest eigenvalue $λ_1(A),$ separated from the rest of the spectrum for $p_n \gg n^{-1},$ has Gaussian fluctuations when $p_n \geq n^{-1}(\log{n})^{6+c}$ for some $c>0.$ This paper shows this remains true in the range $Bn^{-1}(\log{n})^4 \leq p_n \leq 1-Bn^{-1}(\log{n})^4$ with $B>0$ universal, the tool behind it being a central limit theorem for the eigenvalue statistics of $A$ that is justified via the method of moments.