论文标题

深层确定性政策梯度,以最大程度地减少蜂窝v2x通信中的信息时代

Deep Deterministic Policy Gradient to Minimize the Age of Information in Cellular V2X Communications

论文作者

Mlika, Zoubeir, Cherkaoui, Soumaya

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This paper studies the problem of minimizing the age of information (AoI) in cellular vehicle-to-everything communications. To provide minimal AoI and high reliability for vehicles' safety information, NOMA is exploited. We reformulate a resource allocation problem that involves half-duplex transceiver selection, broadcast coverage optimization, power allocation, and resource block scheduling. First, to obtain the optimal solution, we formulate the problem as a mixed-integer nonlinear programming problem and then study its NP-hardness. The NP-hardness result motivates us to design simple solutions. Consequently, we model the problem as a single-agent Markov decision process to solve the problem efficiently using fingerprint deep reinforcement learning techniques such as deep-Q-network (DQN) methods. Nevertheless, applying DQN is not straightforward due to the curse of dimensionality implied by the large and mixed action space that contains discrete and continuous optimization decisions. Therefore, to solve this mixed discrete/continuous problem efficiently, simply and elegantly, we propose a decomposition technique that consists of first solving the discrete subproblem using a matching algorithm based on state-of-the-art stable roommate matching and then solving the continuous subproblem using DRL algorithm that is based on deep deterministic policy gradient DDPG. We validate our proposed method through Monte Carlo simulations where we show that the decomposed matching and DRL algorithm successfully minimizes the AoI and achieves almost 66% performance gain compared to the best benchmarks for various vehicles' speeds, transmission power, or packet sizes. Further, we prove the existence of an optimal value of broadcast coverage at which the learning algorithm provides the optimal AoI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源