论文标题
没有剩下的对:通过正规三重目标改进公制学习
No Pairs Left Behind: Improving Metric Learning with Regularized Triplet Objective
论文作者
论文摘要
我们提出了三胞胎目标函数的新表述,该表述可以改善公制学习,而无需其他样品挖掘或间接费用。我们的方法旨在明确规范三胞胎中正面和负样品之间的距离,相对于锚点阴性距离。作为初始验证,我们表明我们的方法(称为NPARS [NPLB])对标准基准数据集上的传统和最新三重态目标配方进行了改进。为了显示NPLB对现实世界复杂数据的有效性和潜力,我们在大规模的医疗保健数据集(UK BiobAbank)上评估了我们的方法,这表明我们的模型学到的嵌入在测试的下游任务上大大胜过所有其他当前当前表示。此外,我们还提供了一种新的模型无关的单时间健康风险定义,当与学习的表述同时使用时,可以实现对受试者未来健康并发症的最准确预测。我们的结果表明,NPLB是一个简单而有效的框架,用于改善现有的深度度量学习模型,展示了在更复杂的应用中,尤其是在生物学和医疗保健领域中度量学习的潜在含义。
We propose a novel formulation of the triplet objective function that improves metric learning without additional sample mining or overhead costs. Our approach aims to explicitly regularize the distance between the positive and negative samples in a triplet with respect to the anchor-negative distance. As an initial validation, we show that our method (called No Pairs Left Behind [NPLB]) improves upon the traditional and current state-of-the-art triplet objective formulations on standard benchmark datasets. To show the effectiveness and potentials of NPLB on real-world complex data, we evaluate our approach on a large-scale healthcare dataset (UK Biobank), demonstrating that the embeddings learned by our model significantly outperform all other current representations on tested downstream tasks. Additionally, we provide a new model-agnostic single-time health risk definition that, when used in tandem with the learned representations, achieves the most accurate prediction of subjects' future health complications. Our results indicate that NPLB is a simple, yet effective framework for improving existing deep metric learning models, showcasing the potential implications of metric learning in more complex applications, especially in the biological and healthcare domains.