论文标题

在嵌套误差回归模型下使用EBLUP的小面积估计

Small Area Estimation using EBLUPs under the Nested Error Regression Model

论文作者

Lyu, Ziyang, Welsh, A. H.

论文摘要

从人口的样本调查中估算人群中域(称为小区域)的特征是调查统计数据中的重要问题。在本文中,我们考虑基于嵌套误差回归模型下的基于模型的小面积估计。我们讨论了小面积均值的混合模型估计器(经验最佳线性无偏预测指标,eblups)和小面积均值的条件线性预测指标的构建。在每个区域中越来越多的面积和越来越多的单元数量的渐近框架下,我们建立了这些估计量的渐近线性结果和中心限制定理,使我们能够在估计器之间建立渐近等价,近似于采样分布之间的渐近分布,从而使其简单的表达和构建简单的表达式,并构建了它们的简单估计,并正确地进行了pickitication timection timection tiftic potitic Aspotic astictic astictotic aspticative。我们提出了基于模型的模拟,这些模拟表明,在相当小的有限样本中,我们的均方误差估计器的性能也比广泛使用的\ cite {prasad1990ESTEEMATION}估算器更好,并且更简单,因此更易于解释。我们还使用有关新鲜牛奶产品消费者支出的真实数据进行了基于设计的模拟,以探索混合模型估计器的基于设计的属性。我们通过分析人群和进一步的基于设计的模拟来解释和解释一些令人惊讶的模拟结果。这些模拟突出了混合模型估计器在小面积估计中的基于模型和设计的特性之间的重要差异。

Estimating characteristics of domains (referred to as small areas) within a population from sample surveys of the population is an important problem in survey statistics. In this paper, we consider model-based small area estimation under the nested error regression model. We discuss the construction of mixed model estimators (empirical best linear unbiased predictors, EBLUPs) of small area means and the conditional linear predictors of small area means. Under the asymptotic framework of increasing numbers of small areas and increasing numbers of units in each area, we establish asymptotic linearity results and central limit theorems for these estimators which allow us to establish asymptotic equivalences between estimators, approximate their sampling distributions, obtain simple expressions for and construct simple estimators of their asymptotic mean squared errors, and justify asymptotic prediction intervals. We present model-based simulations that show that in quite small, finite samples, our mean squared error estimator performs as well or better than the widely-used \cite{prasad1990estimation} estimator and is much simpler, so is easier to interpret. We also carry out a design-based simulation using real data on consumer expenditure on fresh milk products to explore the design-based properties of the mixed model estimators. We explain and interpret some surprising simulation results through analysis of the population and further design-based simulations. The simulations highlight important differences between the model- and design-based properties of mixed model estimators in small area estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源