论文标题

各向异性多尺度图卷积网络,用于致密形状对应

Anisotropic Multi-Scale Graph Convolutional Network for Dense Shape Correspondence

论文作者

Farazi, Mohammad, Zhu, Wenhui, Yang, Zhangsihao, Wang, Yalin

论文摘要

本文研究了3D致密形状对应关系,这是计算机视觉和图形中的关键形状分析应用。我们介绍了一种新型混合几何深度学习模型,该模型以U-NET模型为主要节点特征提取模块,以几何有意义和独立的独立特征来学习几何有意义和离散化的特征,然后是连续的基于光谱的图形卷积网络。为了创建各种过滤器,我们使用各向异性小波碱基过滤器,对不同的方向和频段敏感。该过滤器集克服了常规图神经网络的过度光滑行为。为了进一步提高模型的性能,我们添加了一个功能,可以在完全连接的层上的最后一层中删除特征图,从而迫使网络总体上学习更多的判别特征。由此产生的信函图显示了基于平均测量误差的基准数据集上的最新性能,并且在3D网格中对离散化的较高鲁棒性。我们的方法为密集形状的信函研究提供了新的见解和实用解决方案。

This paper studies 3D dense shape correspondence, a key shape analysis application in computer vision and graphics. We introduce a novel hybrid geometric deep learning-based model that learns geometrically meaningful and discretization-independent features with a U-Net model as the primary node feature extraction module, followed by a successive spectral-based graph convolutional network. To create a diverse set of filters, we use anisotropic wavelet basis filters, being sensitive to both different directions and band-passes. This filter set overcomes the over-smoothing behavior of conventional graph neural networks. To further improve the model's performance, we add a function that perturbs the feature maps in the last layer ahead of fully connected layers, forcing the network to learn more discriminative features overall. The resulting correspondence maps show state-of-the-art performance on the benchmark datasets based on average geodesic errors and superior robustness to discretization in 3D meshes. Our approach provides new insights and practical solutions to the dense shape correspondence research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源