论文标题
可扩展的替代方案
Extensible Proxy for Efficient NAS
论文作者
论文摘要
神经结构搜索(NAS)已成为设计深神经网络(DNNS)的最新趋势的事实上的方法。进一步提出了有效的或接近零成本的NAS代理,以解决NAS的苛刻计算问题,在这种情况下,每个候选架构网络仅需要一个反向传播的迭代。从代理获得的值被视为下游任务上体系结构性能的预测。但是,两个重要的缺点阻碍了有效的NAS代理的扩展使用。 (1)有效代理不适合各种搜索空间。 (2)多模式下游任务的有效代理无法扩展。基于观察结果,我们设计了一种可扩展的替代(Eproxy),该代理(Eproxy)利用自我监督,很少的训练(即10个反向传播的迭代),该培训的成本接近零。使Eproxy有效的关键组件是一个无法实现的卷积层,称为屏障层,将非线性添加到优化空间中,以便Eproxy可以在早期阶段区分体系结构的性能。此外,为了使eproxy适应不同的下游任务/搜索空间,我们建议使用离散的代理搜索(DPS),以找到对Eproxy的优化训练设置,仅在目标任务上使用少数基准的体系结构。我们的广泛实验证实了癫痫发作和癫痫发作+DPS的有效性。代码可从https://github.com/leeyeehoo/gennas-zero获得。
Neural Architecture Search (NAS) has become a de facto approach in the recent trend of AutoML to design deep neural networks (DNNs). Efficient or near-zero-cost NAS proxies are further proposed to address the demanding computational issues of NAS, where each candidate architecture network only requires one iteration of backpropagation. The values obtained from the proxies are considered the predictions of architecture performance on downstream tasks. However, two significant drawbacks hinder the extended usage of Efficient NAS proxies. (1) Efficient proxies are not adaptive to various search spaces. (2) Efficient proxies are not extensible to multi-modality downstream tasks. Based on the observations, we design a Extensible proxy (Eproxy) that utilizes self-supervised, few-shot training (i.e., 10 iterations of backpropagation) which yields near-zero costs. The key component that makes Eproxy efficient is an untrainable convolution layer termed barrier layer that add the non-linearities to the optimization spaces so that the Eproxy can discriminate the performance of architectures in the early stage. Furthermore, to make Eproxy adaptive to different downstream tasks/search spaces, we propose a Discrete Proxy Search (DPS) to find the optimized training settings for Eproxy with only handful of benchmarked architectures on the target tasks. Our extensive experiments confirm the effectiveness of both Eproxy and Eproxy+DPS. Code is available at https://github.com/leeyeehoo/GenNAS-Zero.