论文标题
爱因斯坦方程的局部初始数据
Localized initial data for Einstein equations
论文作者
论文摘要
我们将新方法与显式解决方案操作员一起使用,以构建具有新的本地化特性的真空爱因斯坦方程的渐近平坦的初始数据集。应用程序包括提高Carlotto-Schoen [arxiv:1407.4766]的衰减率,至$ \ Mathcal {o}(O}(| X |^|^{ - (D-2)})$以及在一个非平地范围内支持的非平坦的初始数据的构建$ \ {(x',x_d)\ in \ mathbb {r}^d:| x'| \ leq x_d^α\} $ for $ \ frac {3} {d+1} <α<1 $。
We apply a new method with explicit solution operators to construct asymptotically flat initial data sets of the vacuum Einstein equation with new localization properties. Applications include an improvement of the decay rate in Carlotto--Schoen [arXiv:1407.4766] to $\mathcal{O}(|x|^{-(d-2)})$ and a construction of nontrivial asymptotically flat initial data supported in a degenerate sector $\{(x',x_d)\in\mathbb{R}^d:|x'|\leq x_d^α\}$ for $\frac{3}{d+1}<α<1$.