论文标题
横向和纵向场中的随机伊辛链:强障碍RG研究
Random Ising chain in transverse and longitudinal fields: Strong disorder RG study
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Motivated by the compound ${\rm LiHo}_x{\rm Y}_{1-x}{\rm F}_4$, we consider the Ising chain with random couplings and in the presence of simultaneous random transverse and longitudinal fields, and study its low-energy properties at zero temperature by the strong disorder renormalization group approach. In the absence of longitudinal fields, the system exhibits a quantum-ordered and a quantum-disordered phase separated by a critical point of infinite disorder. When the longitudinal random field is switched on, the ordered phase vanishes and the trajectories of the renormalization group are attracted to two disordered fixed points: one is characteristic of the classical random field Ising chain, the other describes the quantum disordered phase. The two disordered phases are separated by a separatrix that starts at the infinite disorder fixed point and near which there are strong quantum fluctuations.