论文标题
拓扑角度的扰动运行
Perturbative running of the topological angles
论文作者
论文摘要
我们认为,在一般可统计的场理论中,拓扑角度可能会发展出不早于2循环顺序的加性beta函数。领先的表达是由单个独立的系数唯一决定的。确定了相关的发散图,并讨论了一些在维度正则化中提取β函数的独立方法。我们表明,拓扑角度的特殊性质意味着对CP侵略运算符的异常维度的非平凡限制,并讨论了非呈现beta功能如何影响Weyl一致性条件。提出了一些现象学考虑。
We argue that in general renormalizable field theories the topological angles may develop an additive beta function starting no earlier than 2-loop order. The leading expression is uniquely determined by a single model-independent coefficient. The associated divergent diagrams are identified and a few independent methods for extracting the beta function in dimensional regularization are discussed. We show that the peculiar nature of the topological angles implies non-trivial constraints on the anomalous dimension of the CP-violating operators and discuss how a non-vanishing beta function affects the Weyl consistency conditions. Some phenomenological considerations are presented.