论文标题

代数结构的基础量子独立性:理论和应用

Algebraic structures underlying quantum independences : Theory and Applications

论文作者

Chetrite, Raphael, Patras, Frederic

论文摘要

本调查结果是从意愿调查来调和两种量子概率的方法:一种相当物理的,直接来自量子力学,另一个来自代数。第二个领先的想法是提供统一的图片,将共同介绍给几个应用领域,其中许多可能并非所有人都熟悉(同时在衬托中,并以我们用来展示它们的形式)给读者。最后,我们借此机会展示了最近获得的各种结果,即使用组和双齿技术在各种非交通概率理论中处理诸如累积剂或wick多项式等概念。

The present survey results from the will to reconcile two approaches to quantum probabilities: one rather physical and coming directly from quantum mechanics, the other more algebraic. The second leading idea is to provide a unified picture introducing jointly to several fields of applications, many of which are probably not all familiar (at leat at the same time and in the form we use to present them) to the readers. Lastly, we take the opportunity to present various results obtained recently that use group and bialgebra techniques to handle notions such as cumulants or Wick polynomials in the various noncommutative probability theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源