论文标题

MMTSA:多模式的时间段注意网络,用于有效的人类活动识别

MMTSA: Multimodal Temporal Segment Attention Network for Efficient Human Activity Recognition

论文作者

Gao, Ziqi, Wang, Yuntao, Chen, Jianguo, Xing, Junliang, Patel, Shwetak, Liu, Xin, Shi, Yuanchun

论文摘要

多模式传感器提供补充信息,以开发用于人类活动识别的准确的机器学习方法(HAR),但引入了明显更高的计算负载,从而降低了效率。本文提出了使用RGB摄像机和惯性测量单元(IMUS)的有效的HAR的多模式架构,称为多模式时间段注意力网络(MMTSA)。 MMTSA首先使用Gramian Angular Field(GAF)将IMU传感器数据转换为具有时间和结构的灰度图像,代表人类活动的固有特性。然后,MMTSA应用一种多模式稀疏采样方法来减少数据冗余。最后,MMTSA采用段间注意模块,以进行有效的多模式融合。使用三个公共公共数据集,我们评估了MMTSA在HAR中的有效性和效率。结果表明,与先前的最新方法(SOTA)方法相比,我们的方法在MMACT数据集上实现了较高的性能改进。消融研究和分析表明,MMTSA在融合多模式数据方面的有效性以进行准确的HAR。边缘设备上的效率评估表明,MMTSA的精度明显更好,计算负载较低,并且推断潜伏期较低,而推理潜伏期则比SOTA方法更低。

Multimodal sensors provide complementary information to develop accurate machine-learning methods for human activity recognition (HAR), but introduce significantly higher computational load, which reduces efficiency. This paper proposes an efficient multimodal neural architecture for HAR using an RGB camera and inertial measurement units (IMUs) called Multimodal Temporal Segment Attention Network (MMTSA). MMTSA first transforms IMU sensor data into a temporal and structure-preserving gray-scale image using the Gramian Angular Field (GAF), representing the inherent properties of human activities. MMTSA then applies a multimodal sparse sampling method to reduce data redundancy. Lastly, MMTSA adopts an inter-segment attention module for efficient multimodal fusion. Using three well-established public datasets, we evaluated MMTSA's effectiveness and efficiency in HAR. Results show that our method achieves superior performance improvements 11.13% of cross-subject F1-score on the MMAct dataset than the previous state-of-the-art (SOTA) methods. The ablation study and analysis suggest that MMTSA's effectiveness in fusing multimodal data for accurate HAR. The efficiency evaluation on an edge device showed that MMTSA achieved significantly better accuracy, lower computational load, and lower inference latency than SOTA methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源