论文标题

关于将切片问题减少到集中对称凸体的注释

A note on the reduction of the slicing problem to centrally symmetric convex bodies

论文作者

Martín-Goñi, Javier

论文摘要

在本文中,我们获得了绝对常数$ c $的最佳价值,以使每个各向同性凸体$ k \ subseteq \ subseteq \ mathbb {r}^n $以下不平等现象(克拉塔格证明了这一点,并减少了超成本的猜想,以使中心对称的convex bodies满足: cl_ {k_ {n+2}(g_k)}。 $$这里$ l_k $表示$ k $,$ g_k $其covariogram函数的各向同性常数,它是log-concave,对于任何log-concove函数$ g $,$ k_ {n+2}(g)$都是与log-conconconcave函数$ g $相关的convex of the unip parters in unip partric partric partric partric。为了获得这种不平等,每当$ g $满足比原木concavity更好的凹面时,就可以获得该家族中的凸体之间的鲜明包含结果,因为$ g_k $是$ g_k $,实际上$ \ frac {1} {1} {n} $ - 倒置。

In this paper, we obtain the best possible value of the absolute constant $C$ such that for every isotropic convex body $K \subseteq \mathbb{R}^n$ the following inequality (which was proved by Klartag and reduces the hyperplane conjecture to centrally symmetric convex bodies) is satisfied: $$ L_K\leq CL_{K_{n+2}(g_K)}. $$ Here $L_K$ denotes the isotropic constant of $K$, $g_K$ its covariogram function, which is log-concave, and, for any log-concave function $g$, $K_{n+2}(g)$ is a convex body associated to the log-concave function $g$, which belongs to a uniparametric family introduced by Ball. In order to obtain this inequality, sharp inclusion results between the convex bodies in this family are obtained whenever $g$ satisfies a better type of concavity than the log-concavity, as $g_K$ is, indeed $\frac{1}{n}$-concave.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源