论文标题

当地坐标中泊松和符号几何形状的基本概念,并应用于哈密顿系统

Basic notions of Poisson and symplectic geometry in local coordinates, with applications to Hamiltonian systems

论文作者

Deriglazov, Alexei A.

论文摘要

这项工作包含了泊松基础和符号几何形状基础的简短而基本的解释,重点是对具有二等限制的哈密顿系统的应用。特别是,我们在象征性的歧管上阐明了狄拉克支架的几何含义,并在泊松歧管上提供了雅各比身份的证明。描述了狄拉克支架的许多应用:用于证明由差分和代数方程组成的系统的兼容性证明,以及减少具有已知运动积分的汉密尔顿系统的问题的应用。

This work contains a brief and elementary exposition of the foundations of Poisson and symplectic geometries, with an emphasis on applications for Hamiltonian systems with second-class constraints. In particular, we clarify the geometric meaning of the Dirac bracket on a symplectic manifold and provide a proof of the Jacobi identity on a Poisson manifold. A number of applications of the Dirac bracket are described: applications for the proof of the compatibility of a system consisting of differential and algebraic equations, as well as applications for the problem of reduction of a Hamiltonian system with known integrals of motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源