论文标题
在场景中建模照明作为自动白平平衡校正的样式
Modeling the Lighting in Scenes as Style for Auto White-Balance Correction
论文作者
论文摘要
样式可能是指根据特征空间的形成方式(例如绘画样式,发型,纹理,颜色,过滤等)。在这项工作中,我们提出了一个新颖的想法,即将单一场景中的照明解释为风格的概念。为了验证这一想法,我们引入了一种增强的自动白色平衡(AWB)方法,该方法将单个和混合透明场景中的照明建模为样式因子。我们的AWB方法不需要任何照明估计步骤,但包含网络学习以生成具有不同WB设置的图像的加权图。提出的网络利用样式信息,通过多头样式提取模块从场景中提取的样式信息。将这些加权地图和场景混合后完成AWB校正。对单个和混合透明数据集的实验表明,与最近的作品相比,我们提出的方法可实现有希望的校正结果。这表明,具有多个照明的场景的照明可以通过样式的概念来建模。源代码和训练有素的模型可在https://github.com/birdortyedi/lighting-as-style-awb-correction上找到。
Style may refer to different concepts (e.g. painting style, hairstyle, texture, color, filter, etc.) depending on how the feature space is formed. In this work, we propose a novel idea of interpreting the lighting in the single- and multi-illuminant scenes as the concept of style. To verify this idea, we introduce an enhanced auto white-balance (AWB) method that models the lighting in single- and mixed-illuminant scenes as the style factor. Our AWB method does not require any illumination estimation step, yet contains a network learning to generate the weighting maps of the images with different WB settings. Proposed network utilizes the style information, extracted from the scene by a multi-head style extraction module. AWB correction is completed after blending these weighting maps and the scene. Experiments on single- and mixed-illuminant datasets demonstrate that our proposed method achieves promising correction results when compared to the recent works. This shows that the lighting in the scenes with multiple illuminations can be modeled by the concept of style. Source code and trained models are available on https://github.com/birdortyedi/lighting-as-style-awb-correction.