论文标题

单极拓扑谐振器

Monopole topological resonators

论文作者

Cheng, Hengbin, Yang, Jingyu, Wang, Zhong, Lu, Ling

论文摘要

在磁性单极存在潜在存在的许多深远影响中,它诱导了狄拉克方程中的拓扑零模式,这些模式是46年前由Jackiw和Rebbi衍生而来的,此后一直难以捉摸。在这里,我们表明,可以通过通过Dirac-Mass工程在刺猬空间配置中耦合三维越野点,从而在频段理论中构建单极和多单位溶液。然后,我们在结构调节的声学晶体中实验证明了这种单极结合状态作为腔设备。这些单极谐振器不仅支持任意数量的退化中间隙模式,而且还提供了最佳的单模行为 - 其模态间距与模态体积的立方根本成反比。我们的工作完成了零模式的扭结 - 涡流 - 单调三部曲,并为较大的谐振器提供了最大的自由光谱范围。

Among the many far-reaching consequences of the potential existence of a magnetic monopole, it induces topological zero modes in the Dirac equation, which were derived by Jackiw and Rebbi 46 years ago and have been elusive ever since. Here, we show that the monopole and multi-monopole solutions can be constructed in the band theory by coupling the three-dimensional Dirac points in hedgehog spatial configurations through Dirac-mass engineering. We then experimentally demonstrate such a monopole bound state in a structurally-modulated acoustic crystal as a cavity device. These monopole resonators not only support an arbitrary number of degenerate mid-gap modes, but also offer the optimal single-mode behavior possible -- whose modal spacing is inversely proportional to the cubic root of the modal volume. Our work completes the kink-vortex-monopole trilogy of zero modes and provides the largest free spectral range for sizable resonators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源