论文标题

Spanproto:一个基于两阶段的原型网络,用于几个命名实体识别

SpanProto: A Two-stage Span-based Prototypical Network for Few-shot Named Entity Recognition

论文作者

Wang, Jianing, Han, Chengcheng, Wang, Chengyu, Tan, Chuanqi, Qiu, Minghui, Huang, Songfang, Huang, Jun, Gao, Ming

论文摘要

几个命名实体识别(NER)的旨在识别具有很少带注释的数据的指定实体。以前的方法基于令牌分类解决了此问题,该分类忽略了实体边界的信息,并且不可避免地会受到大量非实体标记的影响。为此,我们提出了一个基于开创性跨度的原型网络(Spanproto),该网络通过两阶段的方法(包括跨度提取和提及分类)来处理很少的射击。在跨度提取阶段,我们将顺序标签转换为全局边界矩阵,从而使模型能够专注于显式边界信息。为了提及分类,我们利用原型学习来捕获每个标记的跨度的语义表示,并使模型更好地适应新颖级实体。为了进一步提高模型性能,我们将跨度提取器产生但未在当前情节集中标记的误报分开,然后呈现基于边缘的损失,以将它们与每个原型区域分开。对多个基准测试的实验表明,我们的模型的表现要优于强大的基线。

Few-shot Named Entity Recognition (NER) aims to identify named entities with very little annotated data. Previous methods solve this problem based on token-wise classification, which ignores the information of entity boundaries, and inevitably the performance is affected by the massive non-entity tokens. To this end, we propose a seminal span-based prototypical network (SpanProto) that tackles few-shot NER via a two-stage approach, including span extraction and mention classification. In the span extraction stage, we transform the sequential tags into a global boundary matrix, enabling the model to focus on the explicit boundary information. For mention classification, we leverage prototypical learning to capture the semantic representations for each labeled span and make the model better adapt to novel-class entities. To further improve the model performance, we split out the false positives generated by the span extractor but not labeled in the current episode set, and then present a margin-based loss to separate them from each prototype region. Experiments over multiple benchmarks demonstrate that our model outperforms strong baselines by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源