论文标题

对全球域的级别设定估算

Sublevel Set Estimates over Global Domains

论文作者

Kim, Joonil

论文摘要

自从Varchenko的开创性论文以来,通过与相$ P $相关的牛顿Polyhedra阐明了振荡积分和相关问题的渐近学。这些积分的支持集中在足够小的社区上。 本文的目的是调查子级和振荡积分的估计值,其支持是全球域$ d $。 $ d $的基本型号是$ \ mathbb {r}^d $。为此,我们定义了与$(P,D)$相关的Newton Polyhedra,并在全球域中$ d $的Varchenko定理建立类似物,在$ p $的非分类条件下。

Since Varchenko's seminal paper, the asymptotics of oscillatory integrals and related problems have been elucidated through the Newton polyhedra associated with the phase $P$. The supports of those integrals are concentrated on sufficiently small neighborhoods. The aim of this paper is to investigate the estimates of sub-level-sets and oscillatory integrals whose supports are global domains $D$. A basic model of $D$ is $ \mathbb{R}^d$. For this purpose, we define the Newton polyhedra associated with $(P,D)$ and establish analogues of Varchenko's theorem in global domains $D$, under non-degeneracy conditions of $P$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源