论文标题
在线多人视频游戏中的属性推理攻击:DOTA2的案例研究
Attribute Inference Attacks in Online Multiplayer Video Games: a Case Study on Dota2
论文作者
论文摘要
您是否知道超过7000万DOTA2播放器可以自由访问他们的游戏内数据?如果以恶意方式使用此类数据怎么办?本文是第一个调查此类问题的文章。 在视频游戏的广泛流行下,我们提出了DOTA2上下文中属性推理攻击(AIA)的第一个威胁模型。我们解释了攻击者如何(以及为什么)如何利用DOTA2生态系统中的大量公共数据来推断有关其参与者的私人信息。由于缺乏关于我们AIA功效的具体证据,我们从经验上证明并评估了它们对现实的影响。通过对$ \ sim $ 500 dota2播放器进行的广泛调查,涉及超过26K比赛,我们验证了玩家的DOTA2活动与其现实生活之间是否存在相关性。然后,在找到这样的链接($ p $ <0.01和$ρ$> 0.3)之后,我们从道德上执行了不同的AIA。我们利用机器学习的能力来推断我们调查的受访者的现实生活属性,通过使用其公开可用的游戏内数据。我们的结果表明,通过应用专业知识,一些AIA可以达到98%的精度和超过90%的精度。因此,本文引起了一个微妙但具体的威胁,可能会影响整个竞争性游戏领域。我们警告了DOTA2的开发人员。
Did you know that over 70 million of Dota2 players have their in-game data freely accessible? What if such data is used in malicious ways? This paper is the first to investigate such a problem. Motivated by the widespread popularity of video games, we propose the first threat model for Attribute Inference Attacks (AIA) in the Dota2 context. We explain how (and why) attackers can exploit the abundant public data in the Dota2 ecosystem to infer private information about its players. Due to lack of concrete evidence on the efficacy of our AIA, we empirically prove and assess their impact in reality. By conducting an extensive survey on $\sim$500 Dota2 players spanning over 26k matches, we verify whether a correlation exists between a player's Dota2 activity and their real-life. Then, after finding such a link ($p$ < 0.01 and $ρ$ > 0.3), we ethically perform diverse AIA. We leverage the capabilities of machine learning to infer real-life attributes of the respondents of our survey by using their publicly available in-game data. Our results show that, by applyingdomain expertise, some AIA can reach up to 98% precision and over 90% accuracy. This paper hence raises the alarm on a subtle, but concrete threat that can potentially affect the entire competitive gaming landscape. We alerted the developers of Dota2.